
Unraveling the Impact of Code Smell
Agglomerations on Code Stability

Abstract—Code smells are symptoms in the source code that
indicate code quality degradation and, consequently, may affect
code comprehension and maintenance. Moreover, when two or
more code smells occur on the same piece of code, forming an
agglomeration, they may be more harmful to the code quality.
Although the impact of smells in isolation is well known, the
impact of their agglomeration is still underexplored. Our goal
with this study is to provide evidence of how agglomerations
impact code stability, i.e., we investigate if agglomeration suffer
more modifications along the system evolution, and in which
intensity. For this purpose, we mined two years of commit history
from 30 open-source Java systems from GitHub. To analyze
code stability, we considered four measurements: number of
commits, lines of modified code, rate of modified classes, and the
proportion of changes. We examined these measurements from
two perspectives: by system and by aggregating all system data.
Additionally, we further considered how a class created/deleted
in this time-span impacts our results. Our main findings are: (i)
classes with two or more code smells of different types change
more frequently and in more intensity than classes with a single
smell or no smell; (ii) the stability of the class varies greatly with
the system under analysis; (iii) when a smelly class was deleted in
our time-range, they usually had several lines of code added until
it became unsustainable. We can conclude that agglomerations
change with more frequency and intensity, raising maintenance
and evolution costs. Consequently, this information can be used
to prioritize code refactoring.

Index Terms—code smell agglomerations, code stability, code
maintenance and evolution

I. INTRODUCTION

Code smells are symptoms in the source code that may indi-
cate a degradation in its quality [1]. For instance, code smells
can indicate that a class or method has many responsibilities,
is complex, presents low cohesion, and inheritance problems.
Consequently, they have a direct impact on development
activities, such as maintenance and evolution [2, 3]. They
also affect understandability and reusability [2, 4, 5], and are
related to faults and changes [3, 6–10]. Studies found that
they are usually introduced in the creation of new classes and
close to deadlines [11–13]. To improve code quality and avoid
future costs, developers can refactor the smells. Refactoring is
an activity in which the code is modified to improve its quality,
without changing its external behavior [1]. Such modifications
include splitting a class/method, moving a method to another
class, renaming, and others.

Studies in the literature identified that when smells occur
together in the same snippet of code (e.g., class or method),
forming a code smell agglomeration, they are even harder
for developers to evolve, to maintain, and to refactor the
system [14–17]. Moreover, to the best of our knowledge, few

studies assess how such agglomerations impact code quality
[18–21]. Our goal is to evaluate and compare if code smell
agglomerations are more unstable, i.e., they change more
frequently and in more intensity when compared to other
classes, such as classes with a single smell or no smell. If
they are unstable, changing them is more time-consuming
and costly than changing other classes. For this purpose, we
mine two years of commit history for 30 open-source Java
systems from the GitHub platform, one year before and one
year after a selected release. We selected these systems from
the top-starred ones that received a major release on the data
collection (2021-2022). For each system, we identify nine
smells using four different detection tools: three smells at the
class level and six at the method level. We then investigate
the history of changes by analyzing the differences in the
distribution for the number of commits, the number of lines
of code modified (added/deleted/churn), and the rate of the
classes on the major release that got changed in this two
year time span. Additionally, we investigate the intensity of
these changes, i.e., the proportion of lines added/deleted/churn
in respect to the class size. To analyse our data, we have
used non-parametric hypothesis testing, the Mann-Whittney
U, combined with Cliff’s Delta effect size. Our contributions
are as follows:

• We provide empirical evidence that classes with code
smell agglomerations change more frequently and with
more intensity compared to other classes. This finding
highlights the importance of refactoring such classes to
mitigate future maintenance and evolution costs.

• The design and implementation of a large study about
code smell agglomeration analysis with 30 Java systems.
We identify 9 code smells over a spanning time of 2
years. All artifacts and data collected during the study
are publicly available in a replication package [22].

Audience. Researchers and practitioners shall benefit from
our insights in understanding the impact of code smell ag-
glomerations on code stability. Contributors and maintainers
of industrial and open-source projects can gain insights into
agglomeration patterns and their impact on project evolution.
Consequently, developers can make informed decisions about
refactoring strategies and prioritize efforts to improve code
quality. The findings may stimulate discussions among devel-
opers about best practices for managing agglomerations. It can
mitigate technical debt and ensure the long-term maintainabil-
ity of software systems. Finally, researchers can use our study
design to extend our analysis.

II. CODE SMELLS AND AGGLOMERATIONS

Code smell is a term used in software development to
describe symptoms or indicators of potential issues that may
impact the class quality and maintainability [1]. They may also
affect system understandability, reusability and extensibility
[2, 4]. In this work, we analyze nine smells, 3 at the class
level and 6 at the method level. Large Class (LC), Data
Class (DC), and Refused Bequest (RB) are at the class level.
Meanwhile, Feature Envy (FE), Intensive Coupling (IC), Dis-
persed Coupling (DiCo), Long Parameter List (LPL), Shotgun
Surgery (SS), and Long Method (LM) are at the method level.
Their definition can be found in Fowler’s, and Lanza and
Marinescu’s books [1, 15]. We selected these smells due to tool
support and because they cover different modularity problems.

In our work, a code smell agglomeration occurs when two or
more code smells co-occur in the same class. To simplify our
analysis, we categorize the agglomerations according to their
types: Heterogeneous Agglomeration is a class that presents
at least two code smells of different types in its code. For
instance, we can have a class that has simultaneously a Large
Class and a Long Method. Homogeneous Agglomeration is
a class that presents at least two smells, but all are of
the same type. For instance, we can have a Homogeneous
Agglomeration with two Feature Envy smells. If this class
had an additional smell that is not a Feature Envy, it would
be classified as Heterogeneous Agglomeration. Isolated smell
is a class that has only one smell, for instance, a class that
has only one Feature Envy. Finally, Clean Class is a class
that does not present any of the detected smells. To avoid
confusion, when we mention Heterogeneous and Homoge-
neous Agglomerations, we are referencing classes that present
a Heterogeneous/Homogeneous Agglomeration. We also we
use the expression “agglomeration types” to represent the
Heterogeneous, Homogeneous, Isolated and Clean classes.

III. STUDY DESIGN

Figure 1 presents an overview of our study design. Arrows
indicate that the element was used as input for the next step.
Step A is the system selection. In total, we selected 30 top-
stared Java systems from GitHub. In Step B, we used four
detection tools to identify nine code smells. Based on the
output of these tools, we applied a voting method strategy,
where we consider the agreement of two detection tools on the
instance smelliness. In Step C, we use our script to categorize
the instances in different agglomeration types. Sections III-B
and III-C describe in detail how the systems were selected and
how the ground truth was created.

In Step D, we request through our Python script the list
of pull requests and commits associated with the selected
systems. This step is required to ensure that all data collected
are in the range of our 2-year time span concerning the
major release date, and that commits were merged in the main
branch. In Step E, we request and process each commit that
had an associated pull request and their associated information,
such as author, merge data, and diff. More details for Steps
D and E are provided in Section III-D. In Step F, to obtain

Fig. 1. Overview of the study Design

software metrics related to size, we used the CK metrics tool
[23], since our analysis includes the rate of changes according
to the agglomeration size. Finally, in Step G, we analyze
our data using statistics and hypothesis testing to answer our
research questions (Section III-A). More detail for Step G is
presented in Section III-E. We highlight that Steps B, D, and
F were conducted in parallel.

A. Research Questions

The impact of code smell agglomerations on code stability
is still underexplored [6, 8, 21]. Our goal is to provide evidence
through the analysis of the stability of the code of different
agglomerations types, in the context of current development
practices [3, 13, 24]. The following research questions (RQs)
guide this work:

RQ1: Do Heterogeneous and Homogeneous Agglomera-
tions undergo more frequent changes compared to Isolated
and Clean types? We approach this question in three ways:
(i) we analyze the number of commits that modified the
agglomeration type; (ii) we compare the differences between
lines of code added/deleted and churn (the sum of added and
deleted lines); and (iii) we examine the number of classes
from each agglomeration that undergo changes over the two-
year timeframe. The goal of this question is to compare the
change patterns of different agglomeration types, focusing
on understanding how stable agglomerations are, to gain
a comprehensive knowledge of their dynamics in software
systems.

RQ2: Do Heterogeneous and Homogeneous Agglomera-
tions undergo changes in more intensity compared to Isolated
and Clean types? To answer this question, we present the pro-
portion of the lines of code added/deleted/churn with respect
to the number of lines of code (LOC) of its respective class.
We further normalized them by the system’s agglomeration
type mean LOC.

B. System Selection

An important decision about building a dataset is the system
in which to collect data (Figure 1 (A)). As we aim to

comprehend the up-to-date changes in agglomeration classes
in contemporary development practices, our data collection
spanned from April 2021 to April 2023. We specifically
selected systems with merged commits in 2021 to capture
the system dynamics. For generalization of results, we apply
some inclusion criteria (IC) when selecting systems: (IC1) we
selected top-star systems, indicating that the system is widely
accepted by the open-source community; (IC2) we selected
systems with at least two years of maturity, since it ranges
our data analysis time span; (IC3) we selected systems with
90% of its code written in Java, due to limitations of the used
code smell detection tools. We discarded repositories that were
for educational purposes.

Table I presents information about the 30 systems we
selected. The first column presents their names and versions.
The second to fourth columns present, respectively, the number
of classes (NOC), methods (NOM), and lines of code (LOC) of
each system. Finally, the fifth column presents the total number
of code smells (#CS) found for the systems, after we applied
a voting strategy, detailed in Section III-C. We can observe
from Table I that the systems vary greatly in terms of size.
The smallest system in terms of LOC is the elastic-search-
analysis-ik (2K LOC), while guava is the largest system (2M
LOC). In terms of code smells, we have found more smells in
dbeaver (1.3K), while for java-faker we only found 2. In total,
we have considered 3.5M LOC, distributed in 50.7K classes.

TABLE I
FINAL DATASET

Name NOC NOM LOC #CS
arthas-3.4.3 834 4,733 39,973 151
cryptomator-1.6.1 590 2,690 16,350 12
dbeaver-21.0.2 6,449 36,575 348,608 1,374
easyexcel-2.2.11 249 1,629 10,639 56
elasticsearch-analysis-ik 28 203 2,051 8
fastjson-1.2.76 249 1,996 44,434 94
gson-2.8.8 231 924 11,721 10
guava-30.1.1 27,412 200,616 2,125,859 75
HikariCP-4.0.0 68 581 4,530 14
hutool-5.7.17 1,214 11,966 79,432 66
java-faker-1.0.2 105 751 3,602 2
jedis 749 6,219 27,404 23
jenkins-2.287 2,432 14,775 120,382 171
jitwatch-1.4.2 538 7,346 46,527 104
jsoup-1.14.2 246 1,551 17,449 18
junit4-4.13.2 310 1,541 10,769 8
libgdx-gdx-1.9.14 2,714 39,338 208,028 327
mall-1.0.2 747 14,322 100,990 15
mybatis-3.5.6 378 2,582 20,533 119
nanohttpd-2.3.1 75 405 3,821 8
netty-socketio-1.7.18 138 712 5,217 9
redisson-3.15.3 1,613 13,607 82,104 119
retrofit-1.6.0 118 403 4,790 12
rocketmq-4.9.2 996 7,536 70,871 352
Sa-Token-1.28.0 191 1,600 8,848 5
Sentinel-1.8.3 1,029 4,963 41,366 94
spring-cloud-alibaba-2.2.2 411 2,003 13,594 34
webmagic-develop-0.7.6 207 955 6,757 19
xxl-job-2.3.0 150 741 8,374 31
zxing-3.4.1 303 1,783 23,614 129
Total 50,774 385,046 3,508,637 3,459

C. Ground Truth Creation

Several code smell datasets have been used in the literature
[25, 26]. However, they either are built using old system
versions, or they are limited to a few smells analyzed. Thus,
we opted to create a ground truth from top-star Java systems
from GitHub using automatic code smell detection tools, since
building a manual code smell ground truth is not trivial (Figure
1 Step B). It is a time-consuming activity, where different
developers consider different aspects of the code [10, 17].
For these reasons, we opted to rely on the agreement of
automatic detection tools, since previous studies indicated a
good accuracy [27–31]. We selected the Java language since
it has several tools that cover several smells [28], and employ
different techniques to identify smelly instances, such as
metrics, refactoring opportunities, machine learning, historical
data, and textual information [26, 28, 30–35].

However, to mitigate tool bias, we used a vote strategy, in
which two tools are used to detect the smell. If they agree that
the instance has the smell, then we add it to our ground truth.
Table II presents the tools used to detect each of the 9 smells
considered in this study. An “✓” indicates that the tool was
used to detect the smell indicated in the column. For instance,
PMD is used to detect DC and LPL.

TABLE II
DETECTION TOOLS

Tool LC RB DC LM FE DiCo IC SS LPL
JDeodorant ✓ ✓ ✓
PMD ✓ ✓
Organic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
JSpIRIT ✓ ✓ ✓ ✓ ✓

Later, we use a script to classify the instances in the
agglomeration types described in Section II (Figure 1 Step
C). We highlight that some tools have some limitations that
were addressed in our script. For example, JSpIRIT does not
present a full path for the detected smell, so we had to match
the class names with possible matching candidates; for the
LPL smell, the PMD tool does not present the method that
has the smell. Finally, the code smells were detected only on
the release of the system; consequently, a class may present
other smells before/after the analyzed release. We highlight
that we remove unrelated data, such as test cases, non-Java
code, project configurations, and third-party code, from the
list of smelly instances.

D. GitHub Data Mining

To achieve our goal, we first decided on a period to compare
the change behaviors. We selected a two-year time span: one
year before and one after the selected release. Our focus is
not on understanding the life cycle of the class, but on the
instability of the class in current development practices. Firstly,
for each system, we have mined the list of commits in the
selected time range and their respective pull-requests (Figure
1 Step D). With the help of the merged field, we consider
only those commits that were merged in the main branch of
the code. Second, we mined the commits and their associated

diff. We highlight that we have used a command line Python
script that uses cURL to request and download all JSON files,
using the subprocess library1 to automatically request all files.
To process the JSON files, we use the Pandas library2.

Third, we parse our data to create a csv file with the class
history (Figure 1 Step E). For each commit, we mined: the
author and committer information; commit title and message;
if it was merged; the class history type; and the lines of
code added and deleted. We also parsed the diff files to
remove information about the non-functional changes, i.e.,
(i) white spaces added/deleted; (ii) added/deleted braces; (iii)
split lines; (iv) indentation positioning. For this purpose, we
saved, for each diff, the set of additions and deletions, and
our analysis is made using only functional code. To identify
non-functional changes, such as indentation, we have used
Levenshtein Distance from the Jellyfish library3, a method that
compares how different two strings are. Finally, we merge the
information about the commits, class size and code smells into
one file for each class.

E. Data Analysis

Figure 2 presents a workflow of how the analysis was per-
formed. Before analyzing our data, we separated it according
to its agglomeration type (see Section II). First, we have
two “Perspectives of Analysis”: “By System” and “General”
perspectives. “By System” analysis considers all 30 systems
data individually, allowing us to understand if different sys-
tems have different change behaviors (“By system” rectangle).
Moreover, we also analyze all the systems’ data to verify if
we can generalize our results (“General” rectangle). From now
on, we call this dataset as General Dataset. For the “General
Dataset”, for the intensity calculation, the proportions of
modified lines of code for each system on the “By System”
dataset were combined into a unique dataset.

Fig. 2. Data Analysis Steps

We also analyze four different datasets separated by the
“Class History Type”. They are: “New”, in which a commit
added the class during its 2-year history; “Dead”, in which
a commit in the 2-year history deletes the class; “Modified”,

1https://docs.python.org/3/library/subprocess.html
2https://pandas.pydata.org/
3https://pypi.org/project/jellyfish/

in which a class had commits that modified its content, but
no commit creating/deleting the class in the considered 2-year
time span; and “No Separation”, in which we consider all
three previous categories as a single dataset. This separation
is possible since we analyze commits before/after release
and, consequently, a class may have been added/deleted in
our time frame. Our aim is to analyze how different these
class history types affect our finding since it is expected that
the “New” type adds several lines of code, while “Dead”
deletes a significant amount of code. To avoid confusion when
discussing results, we highlight that operations related to lines
of code are described as “Modification Type”: the number of
lines added/deleted is treated as #Add/#Del. We highlight that
for all analyses that consider lines of modified code, we have
removed the non-functional changes.

Finally, these subsets of the data are used as input for our
four analyses: (i) the difference in the number of commits;
(ii) if there is a difference in the agglomeration types in
terms of lines added, deleted and total (churn); (iii) we
compare the number of agglomerations that were changed
along our two-year time-span, with the number of instances
found for the agglomeration type in the selected release; and
(iv) the intensity of the changes. We define the “intensity”
of the changes as the proportion of lines of code changed
for a modification type, considering the mean LOC of the
agglomeration type for each system. This provides us insights
about how much of the size of a class is being added/deleted in
the commit. For instance, we investigate if the Heterogeneous
type had more lines #Add when considering its mean LOC.

To compare our agglomeration types, we use the Mann-
Whitney U hypothesis testing [36], since our data do not
follow a normal distribution, they are not paired and can
be ranked. We opt not to use the multiple comparisons
corrections [36] due to our hypothesis formulation and
research questions: our goal is not to compare if the four
agglomeration types have similar behavior at the same
time, but to compare if a pair of categories have different
distributions. Be i and j two agglomeration categories, with
i ̸= j. Be p the property of interest, p ∈ P , with P =
{NumberofCommits,#LinesAdded,#LinesDeleted
CodeChurn, ProportionOfModifiedLines, Intensity}.
Be v the perspective of analysis, in which v can be a
“General” or “By System” analysis. Finally, be s, s ∈ S,
and S = {Modified,New,Dead,NoSep}. Our general
hypothesis can be described as follows:

H0−vspij = Distribution of property p for categories i and j are equal.
H1−vspij = Distribution of property p for categories i and j are not equal.

To enhance our analysis, we present the Cliff’s Delta to
provide evidence of the size of the differences between the
two distributions. They are interpreted as follows: Negligible
(|delta| < 0.147); Small (0.147 ≤ |delta| < 0.330); Medium
(0.330 ≤ |delta| < 0.474); and Large (0.474 ≤ |delta|) [37].
Cliff’s Delta value can be positive or negative, depending on
the order of the comparison. For instance, if the result for

the comparison Heterogeneous-Clean is positive, it indicates
that Heterogeneous type has higher values than the Clean
type. If the signal is negative, it indicates that the value for
Heterogeneous is usually lower than the Clean ones. Finally,
for the intensity calculation, we have used the Min-Max
normalization method [24]. For the Mann-Whittney U we have
used the Python library sciypy.stats4, and for Cliff’s Delta we
used the Cliff’s Delta5 Python library.

IV. RESULTS

This section presents the main findings of this paper. Due
to space constraints, we focus on the most interesting results.
Our full report is presented in our replication package [22].

A. Commit Overview

For the General dataset, we could reject the following
H0: Het=Clean (-0.58), Hom=Clean (-0.58) and Isol=Clean
(-0.584). The Cliff’s Delta indicates that, usually, the number
of commits for the Clean classes is larger than for smelly
classes. Meanwhile, for all 30 systems under analysis, we have
similar results, indicating that Clean classes usually receive
more commits than smelly classes (see our replication package
for more details). This finding may be explained by different
factors: (i) there are more Clean classes than smelly classes
(see column NOC and #CS in Table I), consequently, it is
expected that more Clean classes are changed compared to
smelly ones. (ii) Developers may feel intimidated to change
longer/complex classes. However, it is not sufficient to look
only at the number of commits, since it does not present
information about the size and proportion of the changes. In
the next section, we present the results taking into account the
modified lines of code.

Finding 1: Clean classes receive statistically more commits
than smelly classes, and the difference is Large.

B. General Results for Class Type History

Table III presents the Mann-Whittney U results for the lines
of modified code for the General dataset. The first column
presents the dataset that is being analyzed. The second column
presents the modification type that we could reject H0 for
the dataset of the first column. The third and fourth columns
present, respectively, the agglomeration type pairs that we
could reject the H0 and their respective effect size.

We can observe in Table III that: (I) we could mostly
reject H0 for #Add and Churn when comparing to Clean and
Isolated smells. However, most of them are positive towards
the first type, indicating that, usually, lines of code are more
added to Clean classes than to Homogeneous ones. (II) For
the No Data Separation dataset, we had only two pairs with
differences in behavior: the Het-Hom and Hom-Clean. For

4https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
mannwhitneyu.html

5https://github.com/neilernst/cliffsDelta.

TABLE III
GENERAL PERSPECTIVE OF MODIFICATION TYPES BY CLASS TYPE

HISTORY

Dataset Mod. Type Agg. Types Cliff’s Delta
No Separation #Add Het-Hom 0.37

Hom-Clean -0.47

Modified #Add
Het-Isol 0.11

Het-Clean 0.27
Isol-Clean 0.13

#Del

Het-Isol 0.12
Het-Clean 0.17
Hom-Isol 0.2

Hom-Clean 0.26

Churn
Het-Clean 0.12
Het-Clean 0.27
Isol-Clean 0.13

Dead #Add
Het-Isol 0.73

Het-Clean 0.81
Isol-Clean 0.47

Churn
Het-Isol 0.73

Het-Clean 0.81
Isol-Clean 0.47

the pair Hom-Clean, we obtained negative delta values for
the Homogeneous category, indicating that Clean classes add
more lines of code than Homogeneous ones. Meanwhile,
for the Het-Hom pair, we have found that Heterogeneous
Agglomerations changes significantly add more lines of code
than Homogeneous Agglomerations. (III) For the Modified
dataset, for most pairs of agglomeration types, we could reject
the H0, and mainly when compared to the Heterogeneous
agglomeration type. However, when observing its values, we
can verify that they are Negligible (|delta| < 0.147) and Small
(0.147 ≤ |delta| < 0.330). We can mainly conclude from this
finding that Heterogeneous Agglomerations usually present
difficulty in maintenance, even when compared to Isolated
classes. (IV) For the Dead dataset, we can observe that for the
Heterogeneous and Isolated types, they have several lines of
code added until developers finally delete them. (V) Finally,
we can observe that separating the dataset according to the
Class History Type has a great impact on the results found,
and consequently, they should also be considered separately.

Finding 2: We could mostly reject H0 for the Modified
dataset, and for #Add and Churn modification types. Pairs
with Clean type presented Negligible-Small effects towards
the smelly agglomeration types. Finally, our analysis pro-
vides empirical evidence that Heterogeneous Agglomerations
change the most when considering the number of lines
added, deleted, and churn.

C. Class Type History Results by System

Figure 3 presents the results found for the hypothesis testing
of the modification types for each system under analysis,
without separating the data by their class history type. Figure 3
shows three stacked bar plots, one for each of the modification
types (#Add, #Del and Churn). The x-axis presents the number
of systems that could reject the H0 for the pair on the y-
axis. Meanwhile, the colors inside the bars represent the effect

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html
https://github.com/neilernst/cliffsDelta.

Fig. 3. Summary of Lines of Code Changed by System - No Separation

size. For instance, for the #Add modification type, we could
reject for 28 out of 30 systems the H0. Hence, we could find
a difference between the number of lines of code added of
Heterogeneous and Clean type (Het-Clean bar). From those, 5
had a Negligible effect, while 23 out of 28 had Small effects.

From Figure 3 and our data, we can observe that: (I) for
the #Add modification type, we could reject for most systems
the H0 for Het-Clean (28 out of 30), Isol-Clean (24 out of
30) and Het-Isol (22 out of 30). However, most of the effects
are Negligible (|delta| < 0.147) and Small (0.147 ≤ |delta|
< 0.330). For the Isol-Clean, we had one Medium effect for
the cryptomator system (0.38). (II) For the #Del modification
type, we could reject at least one H0 for most pairs analyzed,
except Het-Hom. For the Het-Clean we could reject the H0

for 28 out of 30 systems, followed by Het-Isol (17) and Hom-
Clean (12), but most effects are Negligible and Small. (III)
For the Churn modification type, we could also reject for at
least one system most pairs, except Het-Hom. For the Het-
Clean, we reject the H0 for 28 out of 30 systems, followed
by Isol-Clean (26 out of 30). However, most of the effects are
Negligible and Small. Consequently, for items I, II and III,
we could find difference between the pairs. We only found
a Large effect for Het-Isol (0.84 at easyexcel) and three for
Hom-Clean (dbeaver, elasticsearch and easyexcel, with effects
of 0.51, 0.5 and 0.5, respectively).

(IV) Interestingly, when consulting our raw data, for both
hutool and jedis systems, the Isol-Clean pair for the #Del
modification type were negative toward the Isolated class.
When we analyzed the Coefficient of Variation for both Clean
and Isolated smells for both systems, we found that for jedis,
the distribution for the Isolated smells is indeed lower than
the Clean ones. For the hutool, we identified that the removal
of non-functional code is impacting directly on the observed
effect sizes.

Finding 3: We have found a consensus on the difference
between the lines of code #Add, #Del, and Churn for the
pairs Het-Clean, Het-Isol and Isol-Clean. However, most
of the effects are Negligible and Small. We also provide
evidence, that for most systems, the Heterogeneous agglom-
eration is more unstable compared to other types for the three
modification types.

When separating the dataset by its class history type, for
arthas e Sentinel we could reject some hypotheses for the
Dead dataset when comparing Isolated and Clean classes. In
total, for the Dead dataset, we rejected 2 null hypotheses for
#Add and 1 for Churn, and all effects were Large and positive.

Figure 4 presents the stacked barplots for the Modified
dataset, organized the same way as Figure 3. From Figure
4, we can observe that we could reject the H0 for a few
systems. In fact, for all three modification types, none of them
could reject the H0 for more than 10 systems. Observing
the results by system, we have found: (I) for the Modified
dataset, we mostly could find differences when comparing
against Clean classes and the pair Het-Isol. (II) We can also
observe that the system dbeaver had the most H0 rejection,
followed by easyexcel. However, for the dbeaver system, most
effects were Negligible. Meanwhile, for the easyexcel, we have
found for the Isol-Clean pair that, for all modification types,
the effects were negative and Large. We also highlight that for
the guava system, we also had a negative effect, but Small, for
the pair Isol-Clean (#Del). This is an interesting result, since
it is expected that smelly classes proportionally suffer more
modifications than Clean classes.

When analysing their distribution, we have found that: (I)
for the guava system, the deviation of the Isolated classes is
significantly higher than those of the Clean classes. For the
easyexcel, all standard deviations were lower for the Isolated
smells when compared to the Clean ones. Moreover, for #Add
and Churn modification types, their standard deviation values
were close to the Clean ones. (II) Finally, we verified that
Isolated smells have a higher proportion of no functional
modification (all #Add, #Del and Churn equal to zero), with
a difference of values for the easyexcel of 49%, and for the
guava system the difference is smaller: 24%. This indicates
that Isolated smells add/remove more non-functional code than
the Clean type, for these two systems.

Finding 4: When separating our datasets, we can observe
that most of the differences are for the Modified dataset, but
we could not reject the null hypotheses for more than 10
systems. We have also found that removing non-functional
changes indeed impact the findings.

Fig. 4. Summary Intensity of Changes by System - Modified Dataset

D. Rate of Agglomerations Changed

Table IV presents the ratio of agglomeration classes that
were both modified in our analyzed time span and existed
at the selected system version, divided by the number of
agglomerations found for its type. The first column presents
the system name. The second to fifth columns present, respec-
tively, the ratio obtained for the Heterogeneous, Homogeneous,
Isolated, and Clean classes. Values inside the parenthesis
indicate the number of the agglomeration type that changed
in our two-year time span. For instance, a value of 1 indicates
that all classes of the type changed in our two-year time span,
while a value of 0 indicates that no classes of the type were
changed. An empty cell indicates that no agglomeration type
was found in the system release. Rates in bold indicate that it
was the highest rate for the system. The last line presents the
results for the General dataset. We highlight that the numerator
and denominator are calculated according to the agglomeration
type. For instance, for the Heterogeneous, the rate was cal-
culated using the number of Heterogeneous classes that were
modified and that existed in the release under analysis, divided
by the number of Heterogeneous agglomerations found in the
system.

We can observe from Table IV that the highest rate of
changes was for the Heterogeneous type, and the lowest was
for the Clean type. Smelly classes are rarer than Clean classes,
and, consequently, they should be evaluated separately. For
18 out of 30 systems, 50% or more of its Heterogeneous
agglomerations were changed in two years, while for the Ho-
mogeneous and Isolated both have 10 and 12 systems having at
least 50% of their Homogeneous and Isolated smells changed
in two years, respectively. For the General perspective, we can
observe that 70% of all Heterogeneous agglomerations were
modified in two years.

For most cases that achieved a 1 rate, the number of
agglomerations was low, ranging from 1 to 7 classes. However,
for some systems, we have a high number of Heterogeneous
Agglomerations changing: dbeaver (169), libgdx (31), and
rocketmq (38). For the Homogeneous type, most systems had
few instances changed, ranging from 0 to 6. Notice that the
system with the most Homogeneous Agglomerations did not
change them significantly: dbeaver changed only 5 out of 84
instances. The results for the Clean classes are as expected,
Clean classes are more common than smelly ones, and it is

TABLE IV
CHANGES BY RATE OF AGGLOMERATIONS FOUND

System Het. Hom. Isol. Clean
arthas 0.94 (17) 0.6 (3) 0.77 (75) 0.38 (270)
cryptomator 1.0 (1) 0.89 (8) 0.27 (158)
dbeaver 0.73 (169) 0.06 (5) 0.59 (237) 0.17 (950)
easyexcel 1.0 (4) 0.0 (0) 0.95 (37) 0.68 (138)
elasticsearch 0.0 (0) 0.17 (1) 0.0
fastjson 0.73 (11) 0.67 (4) 0.44 (12) 0.09 (18)
gson 1.0 (2) 0.5 (2) 0.19 (42)
guava 0.57 (4) 0.5 (2) 0.48 (23) 0.01 (274)
HikariCP 0.67 (2) 0.29 (2) 0.09 (42)
hutool 1.0 (7) 1.0 (2) 0.70 (32) 0.59 (682)
java-faker 0.5 (1) 0.50 (52)
jedis 0.0 (0) 0.0 (0) 0.47 (7) 0.19 (136)
jenkins 0.78 (18) 0.1 (1) 0.86 (62) 0.35 (825)
jitwatch 0.05 (1) 0.0 (0) 0.0 (0) 0.01 (3)
jsoup 1.0 (4) 0.43 (3) 0.11 (26)
junit4 0.0 (0) 0.06 (17)
libgdx 0.70 (31) 0.55 (6) 0.26 (42) 0.13 (320)
mall 0.0 (0) 0.0 (0) 0.14 (1) 0.03 (21)
mybatis-3 0.63 (5) 0.8 (4) 0.24 (19) 0.72 (204)
nanohttpd 1.0 (1) 0.75 (3) 0.47 (33)
netty-socketio 1.0 (1) 0.33 (2) 0.08 (11)
redisson 0.65 (13) 0.2 (2) 0.62 (21) 0.12 (184)
retrofit 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)
rocketmq 0.88 (38) 0.18 (2) 0.50 (64) 0.28 (232)
Sa-Token 0.0 (0) 0.12 (22)
Sentinel 0.33 (3) 0.0 (0) 0.35 (23) 0.23 (216)
spring-cloud 1.0 (3) 1.0 (27) 0.53 (202)
webmagic 1.0 (1) 0.5 (1) 0.18 (2) 0.05 (10)
xxl-job 0.33 (1) 0.0 (0) 0.10 (2) 0.05 (6)
zxing 0.43 (9) 0.8 (4) 0.22 (11) 0.07 (16)
Mean 0.63 0.35 0.42 0.21
General 0.7 (344) 0.21 (38) 0.51 (719) 0.10 (5073)

not expected that all of them will be changed in two years.
However, we can observe some exceptions: for the spring-
cloud-alibaba, hutool and mybatis3, 53%, 59%, and 72% of
the Clean classes were changed, respectively.

RQ1: Do Heterogeneous and Homogeneous Agglomerations
undergo more frequent changes compared to Isolated and
Clean types? For the General dataset, smelly classes change
more frequently than Clean ones. We also found that Hetero-
geneous agglomerations change more frequently than other
agglomeration types. For number of commits, we found
evidence favorable to the Clean classes being unstable.

E. Rate of Changes Results - General Dataset

Figure 5 presents four boxplots, one for each of the class
types. Each boxplot represents the distribution of Lines of
Code (LOC) considering all systems in our dataset. Since
we are analyzing the proportion of the changes concerning
class size, it is important to highlight the differences in the
categories’ distribution. We can observe from the boxplots
that the median size for Heterogeneous and Homogeneous
agglomerations is more than 6 times the size of the Clean
ones and 3 times the size of the Isolated ones. Consequently,
when comparing the intensity of the changes, we have to
consider the system size. For this purpose, we use the Min-
Max normalization method concerning the system size.

Fig. 5. All Systems LOC Boxplots

Table V presents the results of the proportion of lines
changed for the General Dataset, i.e., we are evaluating the
intensity of the changes considering the mean value of the
lines of code #Added, #Deleted and Churn for each system.
The first column presents the categories being compared. The
second column presents the Cliff’s Delta for the H0 that we
could reject for the different types of modifications. We can
see that pairs with Clean classes have a very high Cliff’s
Delta (≥ 0.75), indicating that smelly classes usually adds
and deletes in more intensity than clean ones. This finding
is interesting, since Clean classes tend to have smaller sizes
than smelly classes (see Figure 5), and consequently, changes
to them are more sensitive to size. This finding indicates that
developers change smelly classes in higher intensity than non-
smelly ones. For #Del and Churn, the pair Het-Clean had the
highest effect size (0.89 and 0.95, respectively). Meanwhile,
pairs Hom-Clean and Isol-Clean both obtained an effect of 1
for the #Add modification type. Finally, when observing the
pair Het-Hom, both #Add and Churn were negative towards
the Heterogeneous classes, indicating that the Homogeneous
classes change in more intensity than Heterogeneous ones.

Finding 5: When compared to the Clean type, smelly
classes (Heterogeneous, Homogeneous and Isolated) change
in more intensity. This is specially true for Heterogeneous
and Homogeneous, both with larger effects than Isolated.

Table VI presents the results for the General Perspective
when considering the Class History Type. The first column
presents the agglomeration types being compared. The second

TABLE V
INTENSITY OF CHANGES - NO SEPARATION OF GENERAL DATASET

Agg. Types Cliff’s D
#Add #Del Churn

Het-Hom -0.27 -0.08
Het-Isol 0.26 -0.11

Het-Clean 0.99 0.89 0.95
Hom-Isol 0.55

Hom-Clean 1.0 0.75 0.9
Isol-Clean 1.0 0.75 0.9

and third columns present the Cliff’s Delta for the H0 that we
could reject for the Dead and Modified datasets, respectively.
The second and third columns are further separated to consider
the different modification types: #Add, #Del, and Churn. We
did not reject any case for the New history type.

TABLE VI
INTENSITY OF CHANGES - SEPARATION OF GENERAL DATASET

Agg. Types Dead Modified
#Add #Del Churn #Add #Del Churn

Het-Hom -0.27
Het-Isol 0.26 -0.11

Het-Clean 0.99 0.98 0.99 0.89 0.95
Hom-Isol 0.55

Hom-Clean 1.0 0.75 0.9
Isol-Clean 0.99 0.98 0.99 1.0 0.85 0.97

From Table VI, we can observe that most rejections were
for the Modified dataset. Curiously, for the Modified dataset,
when compared to Homogeneous and Isolated, Heterogeneous
type had negative effects for #Add and #Del, respectively.
Observing our data, the effects for the Modified classes are
very similar to those of the No Separation Dataset. For the
Dead dataset, we have only found statistical differences for
Het-Clean and Isol-Clean, all effects are large and positive
towards the smelly class.

Finding 6: When separating the dataset, we could find
similar results to those of the No Separation, indicating that
the Modified dataset mostly impacts the results found.

F. Intensity of Changes by System

When analyzing the proportion of changes by system and
with no data separation, we have found that for most systems
we could reject the H0 for the #Add modification type.
Considering the systems that rejected the H0, 11 out of 30
systems had Isol-Clean as their largest effect, and 8 for both
Het-Clean and Hom-Clean. Most of the effects were Large,
except Het-Isol (0.27) for rocketmq and Isol-Clean (0.32) for
spring-cloud, with rocketmq also presenting a negative effect
towards the Heterogeneous agglomeration in the Het-Hom
pair (-0.92). We have found five rejections for #Del: Het-
Clean (0.59) for easyexcel system, and Isol-Clean (0.98) for
easyexcel, Het-Clean (0.3) and Isol-Clean (0.23) for jenkins
system, and Het-Clean (-0.3) for redisson. Meanwhile, for
Churn, we could reject for the pair Het-Hom (-0.8) for arthas,

Fig. 6. Summary of Intensity of Changes by Systems - Modified

Isol-Clean (0.44) for fastjson, Isol-Clean (0.94) for nanohttpd,
and Het-Clean(0.74) in spring-cloud.

Finding 7: We conclude that Heterogeneous, Homogeneous,
and Isolated classes change in more intensity than Clean
classes, with a high presence of Large effects for #Add and
Churn.

Meanwhile, when separating the datasets according to their
class history type, we obtained the following results. For the
Dead dataset, we could only reject the H0 for the Isolated-
Clean pair, and for only five systems: for the #Add, we
found differences for arthas (0.64), libgdx (0.96), rocketmq
(0.91), and sentinel (0.95); for #Del we found difference only
for libgdx (0.95); and finally, for Churn we found statistical
differences for arthas (0.62), jenkins (0.97), libgdx (0.96),
rocketmq (0.87), and sentinel (0.95). This also contributes to
the evidence that for some systems, the smelly classes have
so many lines added to their code, that developers prefer to
delete them instead of refactor them.

Figure 6 presents a summary of the results found for the
Modified dataset, and it is organized as Figures 3 and 4. We
can observe that, in total, we could mostly reject the H0 for the
pairs Isol-Clean and for Het-Clean, in the three modification
types. Curiously, we have found for dbeaver and rocketmq
negative effects towards the smelly class, even when compared
to Clean classes. When analyzing their entries we identified
that, for both systems, their LOC distribution and variability
is impacting the observed results.

RQ2: Do Heterogeneous and Homogeneous Agglomerations
undergo changes in more intensity compared to Isolated and
Clean types? In the General perspective, we could observe
that smelly classes tend to change in more intensity in the
three modification types, with the presence of Large Effects.
We could also observe similar results for the Modified
and No Separation dataset. Meanwhile, when observing the
results by system, for all three modification types we could
not reject H0 for more than 50% of the systems. We provide
evidence that, in general, smelly classes change in more
intensity than clean ones.

V. THREATS TO VALIDITY

We opted to collect commit information about the systems
over a time-span of two years, one year before and one year
after the release. Our findings may change if we consider
a different time range. We selected this range to provide
evidence of stability in current open-source development prac-
tices. Commits that are too old may not reflect the current
functionalities of the class.

Our results may be affected by the systems that compose our
dataset. To obtain generalized results, we took the following
measures: (I) We selected 30 top-starred Java systems from
GitHub. They vary in size, domains, maturity, and number
of smells found. (II) We focused on systems with practical
applicability, i.e., its purpose is not educational. (III) We
selected systems currently maintained by the open-source
community. With these considerations, we believe we can
provide evidence of how agglomerations change in the current
open-source scenario.

Another important decision that can affect internal validity
is the used detection tools. To mitigate this bias (I) we use
currently maintained tools; (II) we use a voting strategy based
on the ensemble concept of the machine learning context
[38]. Consequently, we focus on the agreement of the tools.
Furthermore, different perspectives of analysis can lead to
different insights. In our work, we cover four different per-
spectives of changes and answer our research questions based
on the combination of our findings. Even though our work has
generalization limitations, we provide a robust and detailed
study design, allowing further replications to consider new
detection tools, systems, languages, and measurements.

One possible threat to our work is the choice of the statis-
tical framework. Since our dataset is non-normal, we chose a
non-parametric test, Mann Whittney-U, and a non-parametric
measure of effect size, Cliff’s Delta. We also calculated for
our analysis their distribution to gain further insight into our
findings. We did not use any p-value correction, since we
compare the results in pairs, and corrections are used to
compare multiple categories at once.

We consider the generalization of our results, presenting
the results by the system and considering the history of all
systems. We further analyze the impact on the results when
a class was added or removed in the two-year time-span. We

believe that when considered in combination, these multiple
analyses provide reliable conclusions about the changes in the
agglomerations. To avoid errors, we have used well-known
algorithms from the Python library to both mine and analyze
our data. Finally, all the necessary steps and scripts used
in our work are available in our online appendix, allowing
replications and extensions of this work.

VI. RELATED WORK

Several studies in the literature aimed at identifying how
code smells and design pattern co-occurs [15, 16, 18, 19, 39–
42]. Lanza and Marinescu [15] introduced the concept of
Collaboration Disharmonies, in which code smells were iden-
tified through the use of metrics of coupling. Oizumi et
al. [16] raised evidence of how code smells agglomerations
help developers identify design problems. Oizumi et al. [18]
studied how agglomerations and architectural problems are
related, and found that agglomerations are a good indicator
of architectural problems. Santana et al. [19] explored how
different agglomerations impact five modularity metrics. They
have found that agglomerations composed of two or more
smell types impact the complexity and coupling metrics.

Lozano et al. [42] studied when code smells co-exist
and co-disappear. Palomba et al. [41] identified which code
smell agglomerations are more frequent through the use of
association rules. Later, Palomba et al. [43] investigated how
agglomerations are spread along the systems. Yamashita and
Moonen [20] found that some agglomerations types impact
the maintenance activity in an industrial context. Walter et al.
[39] compared agglomerations in several system domains, and
presented a comparison between the agglomerations found by
them and in the literature.

Change analysis is multifaceted and several approaches to
quantify it were proposed in the literature [44]. Khomh et
al. [8] investigated the relationship between anti-patterns and
change-proneness, and if anti-patterns suffered more structural
changes than other classes. They discovered that some smells
tend to change more frequently than classes that do/do not
participate in other anti-patterns, and they usually impact more
their interface. Palomba et al. [6] found, in the context of
Android smells and object-oriented smells, that when a class
has more than one smell, they are more prone to faults and to
be changed.

Jaafar et al. [45] investigated how prone to faults classes that
co-changes with anti-patterns are. To achieve their goals, they
evaluated 10 anti-patterns. They found that presenting LC, LM,
and RB, when co-changed with other classes, the likelihood
of them presenting a fault is 2.5 times higher than other non-
smelly classes. Mondal et al. [46] investigated if duplicated
code exhibits more instability than non-duplicated code. For
this purpose, they investigated eight different change metrics.
They have found that cloned code has a higher likelihood of
getting changed, mainly for Java and C languages.

More recently, Oliveira et al. [47] explored the frequency
and impact of changes related to exception handling, i.e.,
robustness changes, co-occur with code smells. They have

found that a relationship between the changes and code smell
occurrence exists, mainly for Long Method, Feature Envy, and
Dispersed Coupling. They also found that 16.26% of the ro-
bustness changes co-occurred with the introduction of smells.
Trautsch et al. [48] investigated the impact and differences
of perfective (i.e., aims at improving code quality), corrective
(bug fixing), and other changes. They found that, usually, (i)
perfective and corrective changes add fewer lines of code; (ii)
perfective changes have a positive impact on the code quality.

Our work complements the existing literature by providing
evidence of how different code smell agglomerations change
along the system’s history. We quantitatively analyze four
different measurements of changes from two perspectives:
general and by system. We also fill a gap in the literature
on the change-proneness of code smell agglomerations, since
isolated smells usually are the subject of research.

VII. CONCLUSION

Our main goal was to provide empirical evidence of how
different agglomeration types behave in terms of code sta-
bility, in a two-year time-span. We have found empirical
evidence that smelly classes (Heterogeneous, Homogeneous
and Isolated smells) change more often than the Clean type.
Nevertheless, the effects found were mostly Negligible and
Small. When compared to Isolated smells, Heterogeneous
agglomerations indeed change in more frequency. In terms
of the intensity of the changes, we have found that smelly
classes change their code in more intensity than Clean ones,
and when comparing to the Isolated type, both Heterogeneous
and Homogeneous agglomerations had a positive effect for the
#Add modification type. Our findings indicate that even though
agglomerations are rarer in the source code, they are changed
in more frequency and intensity. In conclusion, we provide
additional evidence to practitioners that agglomerations are
unstable, and consequently, that they affect the maintenance
and evolution process.

In future work, we plan to investigate how the different
types of Heterogeneous, Homogeneous, and Isolated classes
change when compared to Clean classes; and consider other
change measurements. We also highlight some potential for
further exploration of this research: (I) consider agglomeration
changes in the industrial context, allowing us to compare the
results we found for the open-source context; (II) analyse
the complete history of the systems; and (III) consider other
programming languages, and consequently, evaluate other
agglomerations composed of smells that are specific to the
languages.

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[2] D. I. K. Sjøberg, A. Yamashita, B. C. D. Anda,
A. Mockus, and T. Dybå, “Quantifying the effect of
code smells on maintenance effort,” IEEE Transactions
on Software Engineering, vol. 39, no. 8, pp. 1144–1156,
Aug 2013.

[3] A. Uchôa, C. Barbosa, D. Coutinho, W. Oizumi, W. K.
Assunçao, S. R. Vergilio, J. A. Pereira, A. Oliveira,
and A. Garcia, “Predicting design impactful changes
in modern code review: A large-scale empirical study,”
in 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR). IEEE, 2021, pp.
471–482.

[4] A. Yamashita and S. Counsell, “Code smells as system-
level indicators of maintainability: An empirical study,”
Journal of Systems and Software, vol. 86, no. 10, pp.
2639–2653, 2013.

[5] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and
S. Li, “Measuring program comprehension: A large-scale
field study with professionals,” IEEE Transactions on
Software Engineering, vol. 44, no. 10, pp. 951–976, Oct
2018.

[6] F. Palomba, G. Bavota, M. Di Penta, F. Fasano,
R. Oliveto, and A. De Lucia, “On the diffuseness and the
impact on maintainability of code smells: A large scale
empirical investigation,” in 2018 IEEE/ACM 40th Inter-
national Conference on Software Engineering. (ICSE),
May 2018, pp. 482–482.

[7] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjøberg,
“Are all code smells harmful? a study of god classes
and brain classes in the evolution of three open source
systems,” in 2010 IEEE International Conference on
Software Maintenance, Sep. 2010, pp. 1–10.

[8] F. Khomh, M. Di Penta, Y. Guéhéneuc, and G. Antoniol,
“An exploratory study of the impact of antipatterns on
class change- and fault-proneness,” Empirical Software
Engineering, vol. 17, no. 3, p. 243–275, Jun. 2012.

[9] T. Hall, M. Zhang, D. Bowes, and Y. Sun, “Some code
smells have a significant but small effect on faults,”
ACM Transactions Software Engineering Methodology.,
vol. 23, no. 4, Sep. 2014.

[10] D. Falessi and R. Kazman, “Worst smells and their worst
reasons,” in 2021 IEEE/ACM International Conference
on Technical Debt (TechDebt), 2021, pp. 45–54.

[11] M. Tufano, F. Palomba, G. Bavota, R. Oliveto,
M. Di Penta, A. De Lucia, and D. Poshyvanyk, “When
and why your code starts to smell bad,” in 2015
IEEE/ACM 37th IEEE International Conference on Soft-
ware Engineering, vol. 1, 2015, pp. 403–414.

[12] J. Tan, D. Feitosa, and P. Avgeriou, “Do practitioners
intentionally self-fix technical debt and why?” in 2021
IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2021, pp. 251–262.

[13] A. Decan, T. Mens, P. R. Mazrae, and M. Golzadeh,
“On the use of github actions in software development
repositories,” in 2022 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2022, pp.
235–245.

[14] M. Abbes, F. Khomh, Y. Guéhéneuc, and G. Antoniol,
“An empirical study of the impact of two antipatterns,
blob and spaghetti code, on program comprehension,”
in 2011 15th European Conference on Software Mainte-

nance and Reengineering, March 2011, pp. 181–190.
[15] M. Lanza, R. Marinescu, and S. Ducasse, Object-

Oriented Metrics in Practice. Springer-Verlag, 2005.
[16] W. Oizumi, A. Garcia, L. d. S. Sousa, B. Cafeo, and

Y. Zhao, “Code anomalies flock together: Exploring code
anomaly agglomerations for locating design problems,”
in 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE), May 2016, pp. 440–451.

[17] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, and
A. D. Lucia, “Do they really smell bad? a study on
developers’ perception of bad code smells,” in 2014 IEEE
International Conference on Software Maintenance and
Evolution, Sep. 2014, pp. 101–110.

[18] W. N. Oizumi, A. F. Garcia, T. E. Colanzi, M. Ferreira,
and A. V. Staa, “On the relationship of code-anomaly
agglomerations and architectural problems,” Journal of
Software Engineering Research and Development, vol. 3,
no. 1, p. 11, 2015.

[19] A. Santana, D. Cruz, and E. Figueiredo, An Exploratory
Study on the Identification and Evaluation of Bad Smell
Agglomerations. Association for Computing Machinery,
2021, p. 1289–1297.

[20] A. Yamashita and L. Moonen, “Exploring the impact
of inter-smell relations on software maintainability: An
empirical study,” in 2013 35th International Conference
on Software Engineering (ICSE), May 2013, pp. 682–
691.

[21] E. V. d. P. Sobrinho, A. De Lucia, and M. d. A. Maia,
“A systematic literature review on bad smells — 5 w’s:
which, when, what, who, where,” IEEE Transactions on
Software Engineering, pp. 1–1, 2018.

[22] [Online]. Available: https://zenodo.org/records/10939220
[23] M. Aniche, Java code metrics calculator (CK), 2015,

available in https://github.com/mauricioaniche/ck/.
[24] X. Han, A. Tahir, P. Liang, S. Counsell, and Y. Luo,

“Understanding code smell detection via code review: A
study of the openstack community,” in 2021 IEEE/ACM
29th International Conference on Program Comprehen-
sion (ICPC), 2021, pp. 323–334.

[25] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li,
M. Lumpe, H. Melton, and J. Noble, “Qualitas corpus:
A curated collection of java code for empirical studies,”
in 2010 Asia Pacific Software Engineering Conference
(APSEC2010), Dec. 2010, pp. 336–345.

[26] L. Madeyski and T. Lewowski, “Detecting code smells
using industry-relevant data,” Inf. Softw. Technol.,
vol. 155, no. C, mar 2023. [Online]. Available:
https://doi.org/10.1016/j.infsof.2022.107112

[27] T. Paiva, A. Damasceno, J. Padilha, E. Figueiredo, and
C. Sant’Anna, “On the evaluation of code smells and de-
tection tools,” Journal of Software Engineering Research
and Development (JSERD), 2017.

[28] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and
E. Figueiredo, “A review-based comparative study of
bad smell detection tools,” in Proceedings of the 20th
International Conference on Evaluation and Assessment

https://zenodo.org/records/10939220
https://doi.org/10.1016/j.infsof.2022.107112

in Software Engineering, ser. EASE ’16, 2016.
[29] G. Santos, A. Santana, G. Vale, and E. Figueiredo,

“Yet another model! a study on model’s similarities for
defect and code smells,” in Fundamental Approaches to
Software Engineering, L. Lambers and S. Uchitel, Eds.
Cham: Springer Nature Switzerland, 2023, pp. 282–305.

[30] D. Cruz, A. Santana, and E. Figueiredo, “Detecting bad
smells with machine learning algorithms: An empirical
study,” in Proceedings of the 3rd International Confer-
ence on Technical Debt, ser. TechDebt ’20. Association
for Computing Machinery, 2020, p. 31–40.

[31] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzi-
georgiou, “Jdeodorant: identification and application of
extract class refactorings,” in 2011 33rd International
Conference on Software Engineering (ICSE), 2011, pp.
1037–1039.

[32] G. d. F. Carneiro, M. Silva, L. Mara, E. Figueiredo,
C. Sant’Anna, A. Garcia, and M. Mendonça, “Identify-
ing code smells with multiple concern views,” in 2010
Brazilian Symposium on Software Engineering, 2010, pp.
128–137.

[33] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik,
and A. De Lucia, “Detecting code smells using machine
learning techniques: are we there yet?” in Int’l Confer-
ence on Software Analysis, Evolution and Reengineering
(SANER), 2018, pp. 612–621.

[34] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De
Lucia, and D. Poshyvanyk, “Detecting bad smells in
source code using change history information,” in 2013
28th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2013, pp. 268–278.

[35] F. Palomba, A. Panichella, A. De Lucia, R. Oliveto,
and A. Zaidman, “A textual-based technique for smell
detection,” in 2016 IEEE 24th international conference
on program comprehension (ICPC). IEEE, 2016, pp.
1–10.

[36] D. J. Sheskin, Handbook of parametric and nonparamet-
ric statistical procedures. crc Press, 2020.

[37] A. Vargha and H. D. Delaney, “A critique and improve-
ment of the cl common language effect size statistics
of mcgraw and wong,” Journal of Educational and
Behavioral Statistics, vol. 25, no. 2, pp. 101–132, 2000.

[38] H. J. K. M. D. Mining, Data Mining: Concepts and
Techniques. Morgan Kaufmann Publishers, 2001.

[39] B. Walter, F. A. Fontana, and V. Ferme, “Code smells
and their collocations: A large-scale experiment on open-
source systems,” J. Syst. Software, vol. 144, pp. 1–21,
2018.

[40] A. Yamashita, M. Zanoni, F. A. Fontana, and B. Walter,
“Inter-smell relations in industrial and open source sys-
tems: A replication and comparative analysis,” in 2015
IEEE International Conference on Software Maintenance
and Evolution (ICSME), Sep. 2015, pp. 121–130.

[41] F. Palomba, R. Oliveto, and A. De Lucia, “Investigating
code smell co-occurrences using association rule learn-
ing: A replicated study,” in 2017 IEEE Work. on Machine

Learning Techniques for Software Quality Evaluation
(MaLTeSQuE), Feb 2017, pp. 8–13.

[42] A. Lozano, K. Mens, and J. Portugal, “Analyzing code
evolution to uncover relations between bad smells,” 03
2015.

[43] F. Palomba, G. Bavota, M. Di Penta, F. Fasano,
R. Oliveto, and A. De Lucia, “A large-scale empirical
study on the lifecycle of code smell co-occurrences,”
Information and Software Technology, vol. 99, pp. 1–10,
2018.

[44] M. Kretsou, E.-M. Arvanitou, A. Ampatzoglou,
I. Deligiannis, and V. C. Gerogiannis, “Change
impact analysis: A systematic mapping study,” Journal
of Systems and Software, vol. 174, p. 110892,
2021. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S016412122030282X

[45] F. Jaafar, Y.-G. Guéhéneuc, S. Hamel, F. Khomh,
and M. Zulkernine, “Evaluating the impact of design
pattern and anti-pattern dependencies on changes and
faults,” Empirical Softw. Engg., vol. 21, no. 3,
p. 896–931, jun 2016. [Online]. Available: https:
//doi.org/10.1007/s10664-015-9361-0

[46] M. Mondal, M. S. Rahman, C. K. Roy, and K. A. Schnei-
der, “Is cloned code really stable?” Empirical Softw.
Engg., vol. 23, no. 2, p. 693–770, apr 2018. [Online].
Available: https://doi.org/10.1007/s10664-017-9528-y

[47] A. Oliveira, J. Correia, L. Sousa, W. K. G. Assunção,
D. Coutinho, A. Garcia, W. Oizumi, C. Barbosa,
A. Uchôa, and J. A. Pereira, “Don’t forget the exception!
: Considering robustness changes to identify design prob-
lems,” in 2023 IEEE/ACM 20th International Conference
on Mining Software Repositories (MSR), 2023, pp. 417–
429.

[48] A. Trautsch, J. Erbel, S. Herbold, and J. Grabowski,
“What really changes when developers intend to
improve their source code: a commit-level study of
static metric value and static analysis warning changes,”
Empirical Software Engineering, vol. 28, pp. 1–40,
2021. [Online]. Available: https://api.semanticscholar.
org/CorpusID:248405991

https://www.sciencedirect.com/science/article/pii/S016412122030282X
https://www.sciencedirect.com/science/article/pii/S016412122030282X
https://doi.org/10.1007/s10664-015-9361-0
https://doi.org/10.1007/s10664-015-9361-0
https://doi.org/10.1007/s10664-017-9528-y
https://api.semanticscholar.org/CorpusID:248405991
https://api.semanticscholar.org/CorpusID:248405991

	Introduction
	Code Smells and Agglomerations
	Study Design
	Research Questions
	System Selection
	Ground Truth Creation
	GitHub Data Mining
	Data Analysis

	Results
	Commit Overview
	General Results for Class Type History
	Class Type History Results by System
	Rate of Agglomerations Changed
	Rate of Changes Results - General Dataset
	Intensity of Changes by System

	Threats to Validity
	Related Work
	Conclusion

